

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 8503-8506

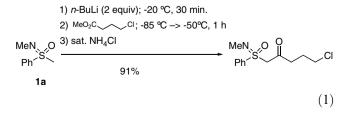
Chemo- and regioselective synthesis of 2-alkylidenetetrahydrofurans bearing a chiral sulfur atom by domino reactions of sulfoximines

Yoann Coquerel* and Jean Rodriguez*

Université Paul Cézanne (Aix-Marseille III), UMR CNRS 6178, Centre universitaire de St Jérôme, boîte D12, 13397 Marseille Cedex 20, France

Received 2 August 2006; revised 22 September 2006; accepted 27 September 2006 Available online 17 October 2006

Abstract—The addition of the dianion of Johnson's sulfoximine to α, ω -halogenoesters evolves by an intramolecular heterocyclization to provide a direct access to 2-alkylidenetetrahydrofurans bearing a chiral sulfur atom via domino addition–elimination/ S_N reactions.


© 2006 Elsevier Ltd. All rights reserved.

The regio- and diastereoselective synthesis of 2-alkylidenetetrahydrofurans via anionic domino reactions has been developed in the past few years independently in our group¹ and the groups of Professors Zhao and coworkers,² Hagiwara et al.³ and Langer and Freiberg.⁴ These products are of pharmacological relevance and represent versatile building blocks for the synthesis of natural products.^{3,5} The 2-alkylidenetetrahydrofurans bearing a conjugated electron withdrawing group such as a ketone, an ester, or a sulfone can undergo various transformations such as aromatization,6 alkylation,7 and bromination followed by palladiumcatalyzed cross-coupling.8 In the context of a study on β-ketosulfoximines connected with our work on anionic domino reactions, we have discovered that hitherto unknown sulfoximinyl 2-alkylidenetetrahydrofurans can be prepared stereoselectively via a domino addition-elimination/substitution sequence. The success of our methodology rests upon the sequential in situ preparation and selective trapping of a β -ketosulfoximine anion with readily available α, ω -halogenoesters.⁹

Addition of methyl 4-chlorobutyrate to a THF solution of the dianion of racemic Johnson's sulfoximine $1a^{10}$ at

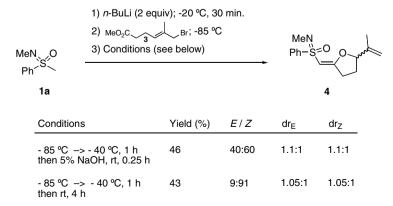
-85 °C, followed by hydrolysis with ammonium chloride at -50 °C, provides chemoselectively the corresponding ε -chloro- β -ketosulfoximine in 91% yield (Eq. 1).¹¹ When the same reaction mixture is hydrolyzed with 5% NaOH, the sulfoximinyl 2-alkylidenetetrahydrofurans 2a (E:Z = 43:57) are formed chemo- and regioselectively in 83% yield by a domino additionelimination/ $S_N 2$ sequence (Scheme 1).¹² Allowing the same reaction mixture to warm slowly to room temperature, and then to 68 °C resulted in the formation of the same sulfoximinyl 2-alkylidenetetrahydrofuran in 55% yield with better but reversed E/Z-stereoselectivity (E:Z = 86:14). The same procedure was applied to the racemic N-tosyl sulfoximine 1b,^{10c} which resulted in the formation of the corresponding N-tosyl sulfoximinyl 2-alkylidenetetrahydrofuran 2b albeit in lower yield (17%) and selectivity (*E*:*Z* = 70:30).

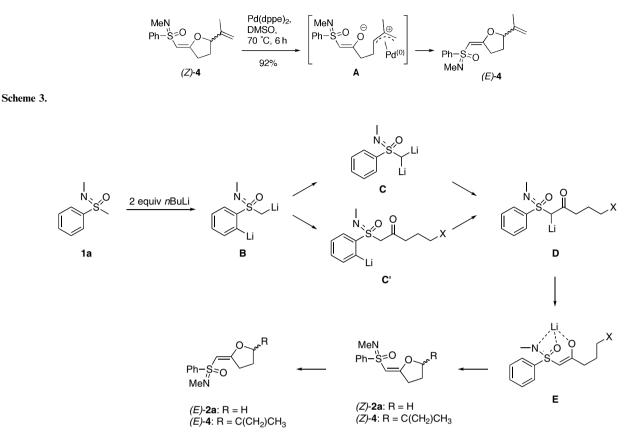
In order to study the chiral induction of the sulfoximinyl group during the cyclization step, the dianion of racemic

Keywords: Domino reactions; Stabilized dianion; Regioselectivity; Functionalized hydrofurans; Sulfoximines.

^{*} Corresponding authors. Tel.: +33(0) 491 289 088; fax: +33(0) 491 288 841; e-mail addresses: yoann.coquerel@univ-cezanne.fr; jean. rodriguez@univ-cezanne.fr

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.09.142


2)		n-BuLi (2 equiv); -20 °C, 30 min. MeO ₂ CCl; -85 °C Conditions (see below)		Ph-S=0 BN
1a: R = Me 1b: R = Ts			2a: R = Me 2b: R = Ts	
	Sulfoximine	e Conditions	Yield (%)	E/Z
	1a	- 85 ℃ -> - 50 ℃, 1 h then 5% NaOH, rt, 1 h	83	43:57
	1a	- 85 ℃ <i>-</i> > rt, 2 h 68 ℃, 1 h	55	86:14
	1b	- 85 °C –> rt, 2 h 68 °C, 1 h	17	70:30


Scheme 1.

Johnson's sulfoximine 1a was allowed to react under the previously described conditions with methyl ester 3 bearing an allylic bromide as a second electrophilic position (Scheme 2). When the reaction medium is hydrolyzed at -40 °C with 5% NaOH, the sulfoximinyl 2-alkylidenetetrahydrofurans 4 (E:Z = 40:60) are formed regioselectively in substantial yield by a domino addition-elimination/S_N2' sequence. However, almost no chiral induction was observed, and (E)-4 and (Z)-4 were isolated as near (1:1) mixtures of diastereomers. If the reaction medium is allowed to warm to room temperature and stirred 4 h before hydrolysis, the sulfoximinyl 2-alkylidenetetrahydrofurans 4 is isolated with good E/Z selectivity (E:Z = 9:91), but still with extremely poor chiral induction.

It is worthy of note that good E/Z-selectivity can only be achieved in the cases where heterocyclization precedes hydrolysis. The thermodynamically more stable E-isomer (thermodynamic product) is favoured in the domino addition–elimination/S_N2 reaction leading to **2**, while the Z-isomer (kinetic product), most probably derived from a lithium chelated β -ketosulfoximinate intermediate (i.e., **E**), is favoured in the domino addition–elimination/S_N2' reaction leading to **4**. Indeed, for **4**, the cyclization step was carried out at lower temperature (kinetic reaction control) and thus, almost no isomerization to the thermodynamically more stable (*E*)-isomer occurred. However, (*Z*)-4 (dr = 1.1:1) is slowly converted to the more stable isomer (*E*)-4 (dr = 1.1:1) on standing neat at room temperature over several months (together with a significant decomposition). This isomerization is better conducted via the π -allyl palladium complex **A**, which undergoes chemoand regioselective *O*-cyclization to give almost exclusively (*E*)-4 (dr > 25:1) without significant change in the diastereomeric ratio (dr = 1.1:1, Scheme 3).^{13,14}

By extrapolation of the work of Professors Gais et al. on the α *ortho* to α *a* transmetallation of dilithiated alkylphenylsulfones,¹⁵ and considering the more recent work of Professor Müller on dilithiosulfoximines,¹⁶ one can postulate the mechanism depicted in Scheme 4 for the observed results. The initially formed α , ortho dilithiosulfoximine **B** would undergo transmetallation to the α, α dilithiosulfoximine C, which reacts chemoselectively with the α, ω -halogenoester to give the α sulfoximinylcarbanion **D**, or alternatively the acylation of the sulfone can precede the translithiation via C'. The α -lithio- β -ketosulfoximine **D** in turn rearranges to the chelated enolate E, precursor of (Z)-2 and (Z)-4, the isomerization of which provides the more stable isomers (E)-2 and (E)-4. The chelated enolate E places the bulky phenyl group in the plane of the C=C double

Scheme 4.

bond, and thus the observed extremely poor chiral induction would result from the low steric difference between the *N*-methyl and the oxygen groups. The domino reaction described herein is one of the rare examples of a reaction of a chiral heteroatom stabilized dilithiocarbanion in which both lithium atoms are attached to the same carbon atom.¹⁶

In summary, 2-alkylidenetetrahydrofurans bearing a chiral sulfoximine group have been prepared in substantial yields and with manageable good E/Z-selectivity via chemo- and regioselective anionic domino addition– elimination/substitution sequences. The scope and applications of this new process are under investigation.

Acknowledgements

The French research ministry, the CNRS and the Université Paul Cézanne (UMR 6178) are gratefully acknowledged for financial support.

References and notes

- Lavoisier-Gallo, T.; Charonnet, E.; Pons, J.-M.; Rajzman, M.; Faure, R.; Rodriguez, J. *Chem. Eur. J.* 2001, 7, 1056, and references cited therein.
- 2. Wang, T.; Hong, F.; Zhao, K. *Tetrahedron Lett.* **1995**, *36*, 6407, and references cited therein.
- Hagiwara, H.; Sato, K.; Nishino, D.; Hoshi, T.; Suzuki, T.; Ando, M. J. Chem. Soc, Perkin Trans. 1 2001, 2946.

- 4. Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4125, and references cited therein.
- For a recent application, see: (a) Montalt, J.; Linker, F.; Ratel, F.; Miesch, M. J. Org. Chem. 2004, 69, 6715; For the stepwise synthesis of sulfonyl substituted 2alkylidenetetrahydrofurans, see: (b) Baker, M. V.; Ghitgas, C.; Dancer, R. J.; Haynes, R. K.; Sherwood, G. V. Aust. J. Chem. 1987, 40, 1331; (c) Uozumi, Y.; Mori, E.; Mori, M.; Shibasaki, M. J. Organomet. Chem. 1990, 399, 93; (d) Short, K. M.; Ziegler, C. B., Jr. Tetrahedron Lett. 1995, 36, 355; (e) Edwards, G. L.; Muldoon, C. A.; Sinclair, D. J. Tetrahedron 1996, 52, 7779; (f) Dai, W.-M.; Lee, M. Y. H. Tetrahedron 1998, 54, 12497.
- Bellur, E.; Freifeld, I.; Langer, P. Tetrahedron Lett. 2005, 46, 2185.
- (a) Edwards, G. L.; Sinclair, D. J. *Tetrahedron Lett.* 1999, 40, 3933; (b) Langer, P.; Bellur, E. J. Org. Chem. 2003, 68, 9742.
- 8. Bellur, E.; Langer, P. Synlett 2004, 2169.
- For a precedent with sulfones, see: (a) Mussatto, M. C.; Savoia, D.; Trombini, C.; Umani-Ronchi, A. J. Chem. Soc., Perkin Trans. 1 1980, 260; For a related domino strategy with sulfones, see: (b) Batmangherlich, S.; Davidson, A. H.; Procter, G. Tetrahedron Lett. 1983, 24, 2889.
- (a) Johnson, C. R. Aldrichim. Acta 1985, 18, 2; For a good procedure for the preparation of both enantiomers of 1a in optically pure form, see: (b) Brandt, J.; Gais, H.-J. *Tetrahedron: Asymmetry* 1997, 8, 909; For a general review on sulfoximines, see: (c) Reggelin, M.; Zur, C. *Synthesis* 2000, 1.
- 11. ε -Halo- β -ketoesters have recently been prepared by ring opening of 2-(alkoxycarbonyl)methylenetetrahydrofurans with BX₃ (X = Cl, Br), which is the opposite reaction of the second step of the domino process presented in the

present letter. See: Bellur, E.; Langer, P. J. Org. Chem. 2005, 70, 3819.

12. The configuration of compounds **2** and **4** was unambiguously determined by 2D NMR NOESY experiments. (*Z*)-**2** and (*Z*)-**4** show strong NOE correlations between the vinyllic proton and the allylic protons, whereas no correlation is observed for the (*E*)-configured isomers. Analytical data: Compound (\pm)-(*Z*)-**2a**: ¹H NMR (300 MHz, CDCl₃, δ ppm) 7.83–7.88 (m, 2H), 7.37–7.45 (m, 3H), 5.37 (br s, 1H), 4.28 (ddd, *J* = 13.9, 8.7, 6.9 Hz, 1H), 4.16 (ddd, *J* = 13.9, 8.6, 7.0 Hz, 1H), 2.55–3.63 (m, 2H), 2.60 (s, 3H), 1.80–2.03 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, δ ppm) 168.0 (C), 141.2 (C), 131.6 (CH), 128.4 (2 CH), 128.3 (2 CH), 97.4 (CH), 74.5 (CH₂), 31.6 (CH₂), 29.2 (CH₃), 23.0 (CH₂); MS (ESI+) *m*/*z* 278 (100%, [M+H]⁺). Compound

(±)-(*E*)-**2a**: ¹H NMR (300 MHz, CDCl₃, δ ppm) 7.71–7.80 (m, 2H), 7.33–7.43 (m, 3H), 5.67 (t, *J* = 1.5 Hz, 1H), 3.98–4.14 (m, 2H), 3.05 (dddd, *J* = 17.6, 8.6, 6.9, 1.6 Hz, 1H), 2.64 (dddd, *J* = 17.6, 8.6, 6.8, 1.5 Hz, 1H), 2.56 (s, 3H), 1.80–2.04 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, δ ppm) 173.2 (C), 141.6 (C), 131.6 (CH), 128.7 (2 CH), 127.6 (2 CH), 99.1 (CH), 71.8 (CH₂), 29.1 (CH₃), 28.5 (CH₂), 23.6 (CH₂); MS (ESI+) *m/z* 278 (100%, [M+H]⁺).

- For related studies, see: (a) Trost, B. M.; Runge, T. A. J. Am. Chem. Soc. 1981, 103, 7550; (b) Trost, B. M.; Lee, P. H. J. Am. Chem. Soc. 1991, 113, 5076.
- 14. A control experiment performed under the same conditions without palladium left (Z)-4 totally unchanged.
- 15. Gais, H.-J.; Vollhardt, J. Tetrahedron Lett. 1988, 29, 1529.
- 16. Müller, J. F. K. Eur. J. Inorg. Chem. 2000, 789.